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ABSTRACT: The equations of magneto-generalized
thermoelasticity with one relaxation time with variable
electrical and thermal conductivity for one-dimensional
problems are cast into a matrix form using the state–
space approach and Laplace transform techniques. The
resulting formulation is applied to a problem of a half
space where the bounded plane is subjected to a ramp-
type heating and a traction free. This takes place when
a constant magnetic field permeates the medium in the

absence of an external electric field. The inversion of the
Laplace transform is carried out using a numerical
approach. Numerical results for the temperature, the dis-
placement, and the stress distributions are given and
illustrated graphically. VC 2011 Wiley Periodicals, Inc. J Appl
Polym Sci 124: 5209–5219, 2012
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INTRODUCTION

For the last three decades, serious attention has been
paid to the generalized thermoelasticity theories in
solving thermoelastic problems in place of the classi-
cal uncoupled/coupled theory of thermoelasticity.
The absence of any elasticity term in the heat con-
duction equation for uncoupled thermoelasticity
appears to be unrealistic; due to the mechanical
loading of an elastic body, the produced strain
causes variation in the temperature field. Moreover,
the parabolic type of the heat conduction equation
results in an infinite velocity of the propagating ther-
mal wave which also contradicts the actual physical
phenomena. Introducing the strain-rate term in the
uncoupled heat conduction equation, Biot1 extended
the analysis to incorporate coupled thermoelasticity.
Although the first shortcoming was over, there
remained the parabolic type partial differential equa-
tion of the heat conduction, which leads to the para-
dox of the infinite velocity of the thermal wave. To
eliminate this paradox, generalized thermoelasticity
theory has been developed subsequently. The devel-
opment of this theory was accelerated by the advent
of the second sound effects observed experimentally
by Ackerman2,3 in materials at a very low tempera-
ture. In heat transfer problems involving very short-

time intervals and/or very high heat fluxes, it has
been revealed that the inclusion of the second sound
effects to the original theory yields results that are
realistic and very much different from those
obtained with classical theory of elasticity.
Due to an advantages of pulsed lasers, fast burst

nuclear reactors and particle accelerators, which can
supply heat pulses with a very fast time rise4,5; gen-
eralized thermoelasticity theory is receiving serious
attention from many researchers. The development
of the second sound effect has been nicely reviewed
by Chandrasekhariah.6 Currently, two different
models of generalized thermoelasticity are being
extensively used, one proposed by Lord and Shul-
man7 and the other proposed by Green and Lind-
say.8 The L–S theory suggests one relaxation time
and according to this theory, only Fourier’s heat con-
duction equation is modified; on the other hand, G–
L theory suggests two relaxation times, and both the
energy equation and the motion equation are modi-
fied. Contrary to the L–S theory, the G–L theory
does not violate Fourier’s law of heat conduction
when the solid has a center of symmetry.
Bahar and Hetnarski9–11 developed a method for

solving coupled thermoelastic problems by using the
state–space approach in which the problem is rewrit-
ten in terms of the state–space variables, namely the
temperature and the displacement gradients. Erbay
and Suhubi12 studied the longitudinal wave propa-
gation in an infinite circular cylinder, which is
assumed to be made of the generalized thermoelastic
material, and thereby obtained the dispersion
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relation when the surface temperature of the cylin-
der was kept constant. Generalized thermoelasticity
problems for an infinite body with a circular cylin-
drical hole and for an infinite solid cylinder were
solved, no need for this word by Furukawa et al.13,14

A problem of generalized thermoelasticity was
solved by Sherief,15 by adopting the state–space
approach. Youssef and El-Bary26 used the same
approach to solve the problem of generalized ther-
moelastic infinite layer subjected to ramp-type ther-
mal and mechanical loading under three theories.
Chandrasekharaiah and Murthy16 studied the ther-
moelastic interactions in an isotropic homogeneous
unbounded linear thermoelastic body with a spheri-
cal cavity, in which the field equations were taken in
unified forms covering the coupled, L–S, and G–L
models of thermoelasticity. The effects of the me-
chanical and thermal relaxations in a heated visco-
elastic medium containing a cylindrical hole were
studied by Misra et al.17 Investigations concerning
interactions between magnetic and thermal fields in
deformable bodies were carried out by Maugin18 as
well as by Eringen and Maugin.19 Subsequently
Abd-Alla and Maugin20 conducted a generalized
theoretical study by considering the mechanical,
thermal, and magnetic fields in centro-symmetric
magnetizable elastic solids.

Among the contributions in the context of the
theory of L–S, El-Maghraby and Youssef21 used the
state–space approach to solve a thermomechanical
shock problem. Sherief and Youssef22 were able to
achieve the short-time solution for a problem in
magneto-thermoelasticity. Youssef23 constructed a
model representing the modulus dependability of
elasticity and thermal conductivity on the reference
temperature and solved a problem of an infinite ma-
terial with a spherical cavity

Almost, all the mechanical or thermal loading on
the bounding surface is considered to be in the form
of a shock. However, the sudden jump of the load is
merely an idealized situation because it is impossible
to realize a pulse described mathematically by a step
function; even very rapid rise time (of the order of
10�9 s) may be slow in terms of the continuum. This
is particularly true in the case of second sound
effects when the thermal relaxation times for typical
metals are less than 10�9 s. Thus, a finite rise time of
an external load (mechanical or thermal) applied on
the surface should be considered while studying a
practical problem. Considering this aspect of rise of
time, Misra et al.24 solved some problems subjected
to a ramp-type heating at the bounding surface. In
Ref.25 Ezzt et al. used the normal mode analysis to
solve the equations of the theory of electro-, mag-
neto-, and thermoviscoelasticity, and the results
were applied to a problem of a rotating thick plate
subject to heat on parts of the upper and lower

surfaces of the plate that varies exponentially with
time.
The present investigation is devoted to a study of

the induced temperature and stress fields in an elas-
tic half space under the purview of generalized ther-
moelasticity in a unified system of field equations.
The infinite half-space continuum is considered to
be made of an isotropic homogeneous thermoelastic
material; the bounding plane surface being subjected
to a ramp-type heating and traction free with con-
stant magnetic field permeates the medium normal
to the bounding plane in the absence of an external
electric field. The rationale behind the study of this
type of heating is that the temperature of the bound-
ing surface cannot be elevated instantaneously.
Thus, a finite time of rise of temperature is required
for this purpose and to show the effect of the mag-
netic field on the behavior of the metal. By adopting
the state–space approach,15 an exact solution for the
problem is first obtained in Laplace transform space.
Because the response is of more interest in the tran-
sient state, the inversions have been carried out
numerically. The derived expressions are computed
numerically for copper, and the results are presented
in a graphical form.

The governing equations

A homogenous isotropic thermoelastic conducting
solid occupying the region 0 � x < 1, whose state
depends only on the space variables ‘‘x’’ and the
time ‘‘t’’ and for which the displacement vector has
component (u(x,t),0,0) will be considered. A constant
magnetic field with component (0, Ho, 0) permeates
the medium in the absence of an external electric
field.
The heat equation

K h; i
� �

; i
¼ 1þ so

@

@ t

8>: 9>; K

j
_hþ c To _e

� �
; i ¼ 1; 2; 3

(1)

We will consider the thermal conductivity to be vari-
able in the form27:

K ¼ K hð Þ ¼ Ko 1þ K1hð Þ (2)

where K1 is a negative small constant, j (diffusivity)
is constants, and Ko is the thermal conductivity
when it is independent on temperature (K ¼ Ko

when K1 ¼ 0 or T ¼ To).
Applying the mapping28 illustrated in

# ¼ 1

Ko

Zh

0

K h0ð Þdh0 (3)

By using eq. (2) into the mapping in (3), one can
obtain
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# ¼ hþ K1

2
h2 (4)

And relatively the heat equation in a one-dimen-
sional problem will take the form

@2#

@x2
¼ @

@t
þ so

@2

@t 2

� �
#

j
þ c To

Ko

@u

@x

� �
(5)

The equations of motion presented in Reference 27

q€u i ¼ ~J ^~B
� �

i þ rij;j (6)

where ~B is the magnetic induction vector given by

~B ¼ lo~H (7)

and ~J is the conduction current density given by
Ohm’s law

~J ¼ r ~Eþ @~u

@t
^~B

� �
(8)

where ~E is the electrical intensity vector.
The constitutive equations have the form27:

rij ¼ 2leij þ kekk � chð Þdij (9)

where eij ¼ 1
2 ui; j þ uj; i
� �

.
The component of the electromagnetic induction

vector are given by Bx ¼ Bz ¼ 0, Bz ¼ Bo ¼ loHo

(Constant), while the component of ~F ¼~J ^~B is
given as (neglecting the nonlinear term),

Fx ¼ �rB2
o

@ u

@ t
; Fy ¼ Fz ¼ 0 (10)

The Wiedemann–Franz law29 states that for metals
at not too low temperature, the ratio of the thermal
conductivity K to the electrical conductivity r is
directly proportional of particular metal

K

r
¼ LT (11)

where L ¼ 2.45 � 10�8 [W X K�2] is the Lorenz
number.27

Using eq. (2), one can obtain

r ¼ Ko

LTo
1þ K1hð Þ

For linearity, the following approximation can be
made

r ffi Ko

LTo
1þ KToð Þ (12)

Using eqs. (6), (9), (10), and (12), the equation of
motion can be obtained as:

kþ 2lð Þ @2 u

@ x2
� c

1þ K1Toð Þ
@ #

@ x

�H2
o l

2
oKo 1þ K1Toð Þ

L To

@ u

@ t
¼ q

@2 u

@ t2
ð13Þ

where @ h
@ x ¼ 1

1þK1hð Þ
@ #
@ x ffi 1

1þK1Toð Þ
@ #
@ x and the constitutive

equation in the form

rxx ¼ kþ 2lð Þ @ u

@ x
� c

1þ K1Toð Þ # (14)

The nondimensional variables are introduced as

x0 ¼ co
j
x; u0 ¼ co

j
u; t0 ¼ c2o

j
t; #0 ¼ #

To
; s0o ¼

c2o
j
so; r

0

¼ r
kþ 2 l

;

where c2o ¼ kþ2l
q .

Hence,

@2#

@ x2
¼ @

@ t
þ so

@2

@ t2

8>>: 9>>; #þ e
@ u

@ x

8>: 9>; (15)

@2 u

@ x2
� a

@ #

@ x
�M

@ u

@ t
¼ @2 u

@ t2
(16)

rxx ¼ @ u

@ x
� a # (17)

where a ¼ c To

kþ2lð Þ 1þK1Toð Þ, M ¼ CE H2
o l2o j

2 1þK1Toð Þ
c2o L To

, and
e ¼ c

q CE
.

In the above equations, the primes were dropped
for convenience.
Applying the Laplace transform defined by the

formula

�f sð Þ ¼ L f ðtÞ½ � ¼
Z1
0

f tð Þe�s t dt

Yield

@2 �#

@ x2
¼ sþ so s

2
� �

�#þ e
@ �u

@ x

8>: 9>; (18)

@2 �u

@ x2
¼ s Mþ s2

� �
�uþ a

@ �#

@ x
(19)

�rxx ¼ @ �u

@ x
� a �# (20)

where

u x; tð Þjt¼0¼ # x; tð Þjt¼0 ¼ 0

Choosing as state variable the temperature incre-
ment, the displacement component in the x-direc-
tion, and their gradient, then eqs. (18) and (19) can
be written in matrix form as
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d �V x; sð Þ
d x

¼ A sð Þ �V x; sð Þ (21)

where

�V x; sð Þ ¼
�u x; sð Þ
�# x; sð Þ
�u0 x; sð Þ
�#0 x; sð Þ

2
664

3
775

and

A sð Þ ¼
0 0 1 0
0 0 0 1
h2 0 0 a
0 g2 e g2 0

2
664

3
775 (22)

Having h2 ¼ sM þ s2 and g2 ¼ s þ sos
2.

The formal solution of system (21) can be written
in the form

�V x; sð Þ ¼ exp A sð Þ x½ � �V 0; sð Þ (23)

Thus the well-known Cayley–Hamilton theorem is
used to find the form of the matrix exp (A(s) x).

The characteristic equation of the matrix A(s) can
be written as

k4 � a e g2 þ g2 þ h2
� �

k2 þ g2 h2 ¼ 0 (24)

the roots of this equation, namely k21 and k22, satisfy
the following relations:

k21 þ k22 ¼ a e g2 þ g2 þ h2 (25)

k21k
2
2 ¼ g2h2 (26)

The Taylor series expansion of the matrix exponen-
tial has the form

exp AðsÞ x½ � ¼
X1
n¼0

AðsÞ x½ � n
n!

(27)

Using Cayley–Hamilton theorem again, both A4 and
the higher orders of the matrix A can be expressed
in terms of I, A, A2, and A3, where I is the unit ma-
trix of the fourth order.

Thus, the infinite series in eq. (27) can be reduced
to

exp A sð Þ x½ � ¼ L x; sð Þ ¼ aoI þ a1Aþ a2A
2 þ a3A

3 (28)

where ao–a3 are coefficients that depend on x and s.
Based on Cayley–Hamilton theorem, the characteris-
tic roots 6k1 and 6k2 of matrix A must satisfy eq.
(28), thus

exp k1 xð Þ ¼ ao þ a1 k1 þ a2 k
2
1 þ a3 k

3
1

exp �k1 xð Þ ¼ ao � a1 k1 þ a2 k
2
1 � a3 k

3
1

exp k2 xð Þ ¼ ao þ a1 k2 þ a2 k
2
2 þ a3 k

3
2; (29)

exp �k2 xð Þ ¼ ao � a1 k2 þ a2 k
2
2 � a3 k

3
2

The solution of this system is given by

ao ¼ k21 cosh k2xð Þ � k22 cosh k1xð Þ
k21 � k22

a1 ¼
k21
k2
sinh k2xð Þ � k22

k1
sinh k1xð Þ

k21 � k22
; (30)

a2 ¼ cosh k1xð Þ � cosh k2xð Þ
k21 � k22

a3 ¼ k2 sinh k2xð Þ � k1 sinh k1xð Þ
k2 k1 k21 � k22

� �
Substituting the expressions defined in eq. (30) into
eq. (28) and computing A2 and A3 yield,

exp A sð Þ x½ � ¼ L x; sð Þ ¼ ‘i j x; sð Þ� �
i; j ¼ 1; 2; 3; 4;

(31)

where the components ‘ij(x,s) are given by

‘11 ¼ 1

k21 � k22
h2 � k22
� �

cosh k1 xð Þ � h2� k21
� �

cosh k2 xð Þ	 


‘12 ¼ ag2

k21 � k22

sinh k1 xð Þ
k1

� sinh k2 xð Þ
k2

� �

‘13¼ 1

k21 � k22

k21 � g2
� �

sinh k1 xð Þ
k1

� k22 � g2
� �

sinh k2 xð Þ
k2

� �

‘14 ¼ a

k21 � k22
cosh k1 xð Þ � cosh k2 xð Þ½ �

‘21 ¼ e g2 h2

k21 � k22

sinh k1 xð Þ
k1

� sinh k2 xð Þ
k2

� �

‘22 ¼ 1

k21 � k22
g2� k22
� �

cosh k1 xð Þ � g2� k21
� �

cosh k2 xð Þ	 


‘23 ¼ e g2

k21 � k22
cosh k1 xð Þ � cosh k2 xð Þ½ �; (32)

‘24¼ 1

k21 � k22

k21�h2
� �

sinh k1 xð Þ
k1

� k22 � h2
� �

sinh k2 xð Þ
k2

� �
;

‘31 ¼ h2 ‘13;

‘32 ¼ a

e
‘23;

‘33 ¼ 1

k21 � k22
k21�g2
� �

cosh k1 xð Þ � k22�g2
� �

cosh k2 xð Þ	 

;

‘34 ¼ a

k21 � k22
k1 sinh k1 xð Þ � k2 sinh k2 xð Þ½ �;
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‘41 ¼ e g2 h2

a
‘14;

‘42 ¼ g2‘24;

‘43 ¼ e g2

a
‘34;

‘44 ¼ 1

k21 � k22
k21 � h
� �

cosh k1 xð Þ� k22 � h2
� �

cosh k2 xð Þ	 

;

Application

A half-space homogeneous elastic medium occupy-
ing the region 0 � x < 1 with quiescent initial state
having r(x,t)|x¼1 ¼ y(x,t)|x¼1 ¼ u(x,t)|x¼1 ¼ 0 is
considered.

The bounding plane x ¼ 0 is subjected to a ramp-
type heating that takes the form

h 0; tð Þ ¼
0 for t � 0
h1 t

to
for 0 < t � to

h1 for t > to

2
4

3
5 (33)

and is considered to be traction free

rx x 0; tð Þ ¼ 0 (34)

where y1 is a constant, and to is the ramping
parameter.

Since the intention for the solution is to vanished
at infinity, then the positive exponentials in eqs. (32)
should be rejected. This is done by replacing each
cosh(kix) by 1

2 exp �ki xð Þ and each sin h(kix) by
� 1

2 exp �ki xð Þ; i ¼ 1; 2 in eqs. (32).
We now apply the state–space approach described

previously to this problem. The two components of
the transformed initial state V(0,s) are known as,

�# 0; sð Þ ¼ d sð Þ; (35)

where d sð Þ ¼ �e�s t K1 s toþ1ð Þ þs to½ �þK1þs to
s3 t2o

h i
h1, which fol-

lows from eqs. (4) and (35), and

�u0 0; sð Þ ¼ a d (36)

which follows from eqs. (20), (34), and (35).
To obtain the two remaining components u(0,s)

and �#
0ð0; sÞ, x ¼ 0 should be substituted in both

sides of eq. (23), and the necessary matrix operation
should be performed to obtain a system of linear
algebraic equations for the unknowns u(0,s) and
�#
0ð0; sÞ, whose solution gives

�u 0; sð Þ ¼ � a d

k1 þ k2
� � ; (37)

�#0 0; sð Þ ¼ � d k21 þ k1k2 þ k22 � h2
	 


k1 þ k2ð Þ : (38)

Substituting eqs. (37) and (38) in the right-hand side
of eq. (23) and using eqs. (31) and (32) provide

�u x; sð Þ ¼ � a d

k21 � k22
� � k1 e

�k1 x � k2 e
�k2 x

	 

; (39)

�# x; sð Þ ¼ d

k21 � k22
� � k21 � h2

� �
e�k1 x � k22 � h2

� �
e�k2 x

	 

;

(40)

where the temperature increment �hðx; sÞ can be
obtained by solving eq. (4) to give

�h x; sð Þ ¼ �1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 2 K1 # x; sð Þp

K1
; (41)

where Lim
k1!0

�h x; sð Þ ¼ �# x; sð Þ
Using eqs. (20), (39), and (40) result in

�rxx x; sð Þ ¼ a d s2

k21 � k22
� � e�k1 x � e�k2 x

	 

(42)

This completes the solution in the Laplace transform
domain.

Inversion of the Laplace transforms

To invert the Laplace transform in eqs. (39), (40),
and (42), one should adopt a numerical inversion
method based on a Fourier series expansion.30,31

Using this method, the inverse f(t) of the Laplace
transform f (s) is approximated by

f tð Þ ¼ ect

t1

1

2
�f cð Þ þ R 1

XN
k¼1

�f cþ i k p
t1

8>: 9>;exp
i k pt
t1

8>: 9>;
" #

;

0 < t1 < 2t;

where N is a sufficiently large integer representing
the number of terms in the truncated Fourier series,
chosen such that

exp ctð ÞR1 �f cþ i N p
t1

8>: 9>; exp
i N p t

t1

8>: 9>;� �
� e1

where e1 is a prescribed small positive number that
corresponds to the degree of the required accuracy.
The parameter ‘‘c’’ is a positive free parameter that
must be greater than the real part of all the singular-
ities of f (s). The optimal choice of ‘‘c’’ was obtained
according to the criteria described in Ref. 30.
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RESULTS AND CONCLUSIONS

The copper material was chosen for the state of a
numerical evaluation, and the constants of the prob-
lem were taken as follow:

Ko ¼ 386 N=K:sec; aT ¼ 1:78ð10Þ�5 K�1;

CE ¼ 383:1 m2=K:sec2; g ¼ 8886:73 m=sec2;

l ¼ 3:86ð10Þ10 N=m2; k ¼ 7:76ð10Þ10 N=m2;

q ¼ 8954 kg=m3; lo ¼ 4pð10Þ�7 N:m:sec2= C2;

Ho ¼ 106 C=m:sec; so ¼ 0:02 sec; e ¼ 1:60861;

To ¼ 293 K; a ¼ 0:0104442;

M ¼ 5:0 ; K1 ¼ �0:1:

The computations were carried out for t ¼ 0.4 s and
y1 ¼ 1. The temperature, stress, and displacement
distributions are represented graphically.

The field quantities, temperature, stress, and dis-
placement depend not only on the state and space
variables t and x but also depend on the rise-time
parameter to and the thermal relaxation-time param-
eter so. It has been observed that the finite rise-time
parameter to has significant effect on the tempera-
ture, stress, and displacement quantities but. Here,
all the variables/parameters are taken in nondimen-
sional forms. Numerical analysis has been carried
out by taking x range from 0.0 to 1.0. The numerical
values for the field quantities are computed for a
wide range of values of finite pulse rise time to in
the two situations t > to and t < to, respectively.

Figures 1–4 exhibit the space variation of tempera-
ture at instants, t ¼ 0.4 for different values of to in
which we observe the following:

(i) Figure 1—significant difference in the value
of temperature is noticed for different value

of the parameter K1. Actually, the tempera-
ture decreases when the value of the
parameter K1 changes from the normal case
(K1 ¼ 0 the thermal conductivity is constant)
to K1 ¼ �0.1 (K1 = 0 the thermal con-
ductivity is variable) for the two cases, t >
to or t < to.

(ii) Figure 2—significant difference in the value
of temperature is noticed for different value
of the relaxation time so. We noticed that
when t > to the value of the temperature
increases as the value of the relaxation time
increases, but the situation is inverse when t
< to that means the parameter to has large
effect on the field of the temperature.

(iii) Figure 3—no significant difference in the value
of temperature is noticed for different value of
the magnetic field when t > to or t < to.

(iv) Figure 4—significant difference in the value
of temperature is noticed for the wide rang of
different value of the parameter to, 0.2, 0.3,
0.4, 0.5, and 0.6.

Figures 5–8 exhibit the space variation of stress at
instants, t ¼ 0.4 for different values of to in which
we observe the following:

(i) Figure 5—significant difference in the value
of stress is noticed for different value of the
parameter K1. Actually, the absolute value of
the stress decreases when the value of the pa-
rameter K1 changes from the normal case (K1

¼ 0 the thermal conductivity is constant) to
K1 ¼ �0.1 (K1 = 0 the thermal conductivity
is variable) for the case t < to, but in the other
case, t > to the value of the absolute value of
the stress decreases when the parameter K1

Figure 1 The temperature distribution for different value of K1.
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Figure 2 The temperature distribution for different value of relaxation time.

Figure 3 The temperature distribution for different value of magnetic field.

Figure 4 The temperature distribution for different value of to.
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Figure 5 The stress distribution for different value of K1.

Figure 6 The stress distribution for different value of relaxation time.

Figure 7 The stress distribution for different value of M.
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decrease rapidly till x ¼ 0.2 and goes down
rabidly till x ¼ 0.38, after that, it comes up till
the end slowly.

(ii) Figure 6—significant difference in the value
of stress is noticed for different value of the
relaxation time so.

(iii) Figure 7—significant difference in the
value of stress is noticed for different value
of the magnetic field, where the figure
shows that increase in the magnetic field
cause increase in the value of the stress at the
same point of x for the two cases t > to and
t < to.

(iv) Figure 8—significant difference in the value
of stress is noticed for the wide rang of dif-
ferent value of the parameter to, 0.2, 0.3, 0.4,
0.5, and 0.6.

Figures 9–12 exhibit the space variation of dis-
placement at instants, t ¼ 0.4 for different values of
to in which we observe the following:

(i) Figure 9—small difference in the value of dis-
placement is noticed for different value of the
parameter K1.

(ii) Figure 10—significant difference in the value
of displacement is noticed for different value
of the relaxation time so. We noticed that
when t > to, the value of the displacement
increases as the value of the relaxation time
increases, but the situation is inverse when t
< to for some intervals.

(iii) Figure 11—significant difference in the value
of displacement is noticed for different value
of the magnetic field, where the figure shows

Figure 8 The stress distribution for different value of t0.

Figure 9 The displacement distribution for different value of K1.

MAGNETO-GENERALIZED THERMOELASTICITY WITH VARIABLE PROPERTIES 5217

Journal of Applied Polymer Science DOI 10.1002/app



Figure 10 The displacement distribution for different value of relaxation time.

Figure 11 The displacement distribution for different value of M.

Figure 12 The displacement distribution for different value of t0.
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that increase in the magnetic field cause
increase in the value of the displacement at
the some points of x for the two cases t > to
and t < to.

(iv) Figure 12—significant difference in the value
of displacement is noticed for the wide rang
of different value of the parameter to, 0.2, 0.3,
0.4, 0.5, and 0.6.

Experimental comparison

A comparison will be made between experimental
data obtained in Reference 32 and there is some
deviation in the shape of curves. This deviation is
due to the different of material used in two
researches.

NOMENCLATURE

q Density
t Time
k,l Lamé’s constants
To Reference temperature
y ¼ (T � To) absolute temperature such

that h
T0

��� ��� < 1
ui Components of displacement vector
rij Components of stress tensor
eij Components of strain deviator tensor
e ¼ ekk, dilatation
dij Delta Kronecker
aT Coefficient of linear thermal expansion
c ¼(3k þ 2l) aT
K Thermal conductivity
K1 Negative small constant
CE Specific heat at constant strain
so Relaxation time
lo Magnetic permeability
Ho Magnetic field
E Electrical field
j Diffusivity
L ¼ 2.45 � 10�8 Lorenz number
r Electrical conductivity
c2o ¼ kþ2 l

q
e ¼ c

q CE

a ¼ cTo

kþ2lð Þ 1þk1Toð Þ

M ¼ CE H2
o l2o j

2 1þk1Toð Þ
c2o L To
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